III-V MOSFETs for Future CMOS

J. A. del Alamo, D. A. Antoniadis, J. Lin, W. Lu, A. Vardi and X. Zhao

> Microsystems Technology Laboratories Massachusetts Institute of Technology

IEEE Compound Semiconductor IC Symposium

New Orleans, LA; October 11-14, 2015

Acknowledgements:

- Sponsors: DTRA, Lam Research, Northrop Grumman, NSF, Samsung
- Labs at MIT: MTL, EBL

Contents

- 1. Motivation: Moore's Law and MOSFET scaling
- 2. Planar InGaAs MOSFETs
- 3. InGaAs FinFETs
- 4. Nanowire InGaAs MOSFETs
- 5. Conclusions

1. Moore's Law at 50: the end in sight?

THE WALL STREET JOURNAL Moore's Law Is Showing Its Age

The prediction about squeezing transistors onto silicon has been revised again.

OSA: Carly Fiorina Reinvents HP Steven Pinker on Human Bature

Moore's Law is dead. Long live Moore's Law. MOORE'S LAW 50 YEARS

Moore's Law

Moore's Law = exponential increase in transistor density

Moore's Law

How far can Si support Moore's Law?

Transistor scaling → Voltage scaling → Performance suffers

Transistor performance saturated in recent years

Moore's Law: it's all about MOSFET scaling

1. New device structures:

Enhanced gate control \rightarrow improved scalability

Moore's Law: it's all about MOSFET scaling

2. New materials:

Si \rightarrow Strained Si \rightarrow SiGe \rightarrow InGaAs

Si \rightarrow Strained Si \rightarrow SiGe \rightarrow Ge \rightarrow InGaSb

Future CMOS might involve two different channel materials with **two different relaxed lattice constants**!

del Alamo, Nature 2011 (updated)

III-V electronics in your pocket!

2. Self-aligned Planar InGaAs MOSFETs

Lin, IEDM 2012, 2013, 2014

Si,N, encapsulation

Contact

K

NilnAs S/D

Lee, EDL 2014; Huang, IEDM 2014

Chang, IEDM 2013

Sun, IEDM 2013, 2014

11

reacted

NilnAs

Self-aligned Planar InGaAs MOSFETs @ MIT

Lin, IEDM 2012, 2013, 2014

Recess-gate process:

- CMOS-compatible
- Refractory ohmic contacts (W/Mo)
- Extensive use of RIE

Highest performance InGaAs MOSFET

- Channel: In_{0.7}Ga_{0.3}As/InAs/In_{0.7}Ga_{0.3}As
- Gate oxide: HfO₂ (2.5 nm, EOT~ 0.5 nm)

• Record $g_{m,max} = 3.1 \text{ mS/}\mu\text{m}$ at $V_{ds} = 0.5 \text{ V}$

• $R_{on} = 190 \ \Omega.\mu m$

Lin, IEDM 2014

Excess OFF-state current

OFF-state current enhanced with V_{ds}

→ Band-to-Band Tunneling (BTBT) or Gate-Induced Drain Leakage (GIDL)

Excess OFF-state current

Planar InGaAs MOSFET scaling

- $t_c \downarrow \rightarrow S \downarrow$ but also $g_{m,max} \downarrow$
- Even at $t_c=3 \text{ nm}$, $L_{g,min}\sim40 \text{ nm}$ \rightarrow planar MOSFET at limit of scaling

Benchmarking: g_m in MOSFETs vs. HEMTs

 g_m of InGaAs MOSFETs vs. HEMTs (any V_{DD} , any L_g):

- Very rapid recent progress in MOSFET g_m
- Best MOSFETs now match best HEMTs
- No sign of stalling \rightarrow more progress ahead!

3. InGaAs FinFETs and Trigate MOSFETs

InGaAs FinFETs @ MIT

Vardi, DRC 2014, EDL 2015, IEDM 2015

4. Nanowire InGaAs MOSFETs

Nanowire MOSFET: ultimate scalable transistor

Lateral vs. Vertical Nanowire MOSFETs

Vertical NW: uncouples footprint scaling from L_g and L_c scaling \rightarrow power, performance and area gains wrt. Lateral NW

InGaAs Vertical Nanowires on Si by direct growth

InAs NWs on Si by SAE

Björk, JCG 2012

Vapor-Solid-Liquid (VLS) Technique

Selective-Area Epitaxy

Riel, MRS Bull 2014

InGaAs VNW-MOSFETs fabricated via top-down approach @ MIT

Key enabling technologies:

- BCl₃/SiCl₄/Ar RIE
- digital etch

Zhao, IEDM 2013

Top-down approach: flexible and manufacturable

D=30 nm NW-MOSFET

Single nanowire MOSFET:

- D=30 nm
- L_{ch}= 80 nm
- 4.5 nm AI_2O_3 (EOT = 2.2 nm)
- At V_{DS} =0.5 V:
- g_{m,pk}=280 μS/μm
- R_{on}=759 Ω.μm

Zhao, IEDM 2013

Conclusions

- Great recent progress on planar, fin and nanowire III-V MOSFETs
- 2. Vertical Nanowire III-V MOSFET: superior scalability and power/performance characteristics
- 3. Vertical Nanowire n- and p-type III-V MOSFET: plausible path for co-integration on Si
- 4. Many demonstrations of InGaAs VNW MOSFETs by bottom-up and top-down approaches
- 5. Many issues to work out...

A lot of work ahead but... exciting future for III-V electronics

